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Complex disorder and corresponding diffuse scattering from

La0.70(1)(Al0.14(1)I0.86(1)) was taken as basis for investigating the reliability,

reproducibility and influence of the refinement parameters of evolutionary

algorithm refinements of Monte Carlo simulations. Using the same diffuse-

scattering data set, a model relying on reasonable a priori knowledge about the

real structure was used, as well as one that includes no presumptions except the

average structure and the chemical composition. To strengthen the comple-

mentary character of the approaches, different evolutionary algorithms

(‘differential’ and ‘cooperative’ evolution) were employed. It was found that

the resulting structures are qualitatively and quantitatively in good agreement

independent of the strategy used. It is shown that the method of population

averaging (applicable only in differential evolution refinements) allows reason-

able estimates about uncertainties of structure parameters if proper refinement

parameters are chosen, which makes differential evolution the method of choice

for quantitative refinements. Recommendations for the best choices of the

parameters are given. The disordered structure of La0.70(1)(Al0.14(1)I0.86(1))

contains clusters including differently interconnected La6Al units. The modes of

interconnection and local distortions are discussed in detail.

1. Introduction

Two technical advances in the past two decades have opened

up new possibilities for the investigation of diffuse scattering

and underlying structural disorder. On the one hand, modern

area detectors like CCD cameras and image plates not only

allow quantitative measurement of diffuse intensities as a

matter of routine, but they deliver it (almost) for free as a side

product of conventional data collection. Modelling of

disorder, on the other hand, strongly benefits from the ever-

growing power of computers. Although not fast enough to

refine complex structures in a matter of a few minutes, modern

computers allow the use of algorithms that seemed ridicu-

lously time-consuming just a few years ago. Qualitative

interpretation and simulation of diffuse diffraction patterns

are now well established, and Monte Carlo (MC) methods for

model building have been described in detail (Welberry &

Butler, 1994; Proffen & Neder, 1997; Proffen & Welberry,

1998). There are, however, only a few quantitative MC studies

based on experimental diffuse data (for a recent review see

Welberry & Goossens, 2008). Besides reverse Monte Carlo

modelling (McGreevy, 2001), optimization of Monte Carlo

models using least-squares methods (Welberry et al., 1998) and

evolutionary algorithms (EAs) have been particularly

successful for quantitative studies of disorder. Different

algorithms have been described and compared (Weber &

Bürgi, 2002; Weber, 2005). In contrast to conventional struc-

ture refinements on Bragg data, there is little experience

regarding the reliability and reproducibility of the results. This

raises the question of how robust, accurate and precise results

obtained from EAs or MC simulations of disordered struc-

tures are. It is far from being clear how structure models are

affected by different algorithms, by starting values of para-

meters, or by parameters of the algorithms themselves, such as

mutation or crossover constants. Furthermore, if the aim of a

structure determination is a quantitative investigation of

disorder and if the methods used are to become routine tools

for structural chemists, it is essential to quantify uncertainties.



Currently, there are no established methods for estimating

uncertainties obtained from EA/MC refinements. Bürgi et al.

(2005) have shown that averaging structural information

obtained from an EA population not only obtains results

faster than taking results from the best individual in a popu-

lation, but also provides information about the variance of

parameters within the population. However, no systematic

investigation about the meaning of the variances as a measure

for uncertainties was performed. Definition of uncertainties is

not only a problem for EA methods but also for least-squares

refinements of MC models, even though standard deviations

of refined MC model parameters are directly derived by the

algorithm. The refined MC parameters, however, are in most

cases not the quantities of interest when investigating a

disordered material, because they usually represent a simpli-

fied, nonphysical and thus hardly transferable energy scheme

of interactions. The desired structural information is indirectly

obtained from the simulated crystal after execution of the MC

algorithm. In general, the standard deviations of the refined

MC energy parameters cannot be translated to uncertainties

about structure parameters like interatomic distances or pair

correlation coefficients.

The models used for MC methods often include significant

preassumptions about the chemistry of the compound under

investigation. Whereas in many cases these can be derived by

a broad range of other methods, they rely on experience and

intuition in other cases. If robust a priori knowledge about the

real structure is not available, it is desirable to use nothing but

the information from the average structure as a basis for the

disorder model. This proves to be most troublesome in cases

where the average structure does not contain much chemical

information, i.e. when a complicated real structure yields a

simple average structure.

Recently, we investigated a disordered cluster compound

La0.70(1)(Al0.14(1)I0.86(1)) with a simple rock-salt type of average

structure (Oeckler et al., 2005a,b). Assuming the presence of

well known octahedral La6Al units, the diffuse scattering

(hollow spheres around half of the Bragg reflections, i.e. those

with odd indices) could be interpreted and used for a quan-

titative refinement of the clusters’ geometry and their relative

positions. This compound is an ideal example for comparing

results and assessing the reproducibility and reliability of EAs

for the refinement of MC models. The short-range-order

phenomena are sufficiently complex to evaluate different

relatively fine details. Furthermore, optimizing the structure

without additional information apart from the approximate

overall chemical composition and the Bragg structure poses a

significant challenge as the average structure is rather mean-

ingless.

Clusters containing octahedral metal-atom cores are

frequently found in metal-rich compounds of early transition

metals and in halides of the valence-electron-poor lantha-

nides. In the latter case, the M6 octahedron is normally centred

by an additional atom Z (e.g. B, Al, C, Si and many more like

Au) and surrounded by a cuboctahedron of 12 halogen atoms

X above all edges. These ‘inner’ ligands are denoted Xi in

order to distinguish them from ‘outer’ ligands Xa above the six

corners of the octahedron.

This cluster configuration is closely related to the rock-salt

structure as shown in Fig. 1(a). The common close packing of

X and Z atoms is complete whereas the cation positions are

only occupied around the Z atoms. Increasing the Z/X ratio

leads to a condensation of the octahedral units, either via

corners or via edges in case of Z substituting an Xa-type or an

Xi-type halogen atom, respectively (Fig. 1b). All free edges of

the M6 octahedra are coordinated by X atoms which may

belong to only one cluster (Xi) or are shared between clusters

with an identical function (Xi–i) or a different function (Xi–a).

Similarly, Xa-type atoms may be shared as Xa–i or Xa–a-type

bridges.

Such cluster compounds represent a large family with many

variations in these connectivities (Simon, 1988a,b; Simon et al.,

2006) and they exhibit many interesting structure–property

relationships, e.g. concerning magnetism (Ryazanov et al.,

2006) and superconductivity (Simon et al., 1996). Most of their

structures consist of a completely ordered, relatively complex

arrangement of clusters within the rock-salt-type basic struc-

ture. However, severely disordered representatives are

known, such as Tb13Br18B3 (Oeckler et al., 2002a,b, 2003) with

one-dimensional disorder of layers containing pairs of octa-

hedra, or Ce29Al14I28 (Oeckler, Mattausch & Simon, 2005)

with a more complex short-range order. The compound

mentioned above, La0.70(1)(Al0.14(1)I0.86(1)), exhibits a much

higher degree of disorder than all other rare-earth metal

cluster compounds.

The purpose of the present investigation on this compound

is to reveal the influence of specific Monte Carlo models,
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Figure 1
(a) Derivation of the M6ZXi

12 cluster (right, with some additional Xa

atoms) from the rock-salt structure (left): a Z atom occupying an anion
site is enclosed by cationic M atoms forming an octahedron; Xi- and Xa-
type atoms are found at next-neighbouring anion sites along h110i and
h100i directions, respectively. (b) Edge- (left) and corner- (right) sharing
condensed clusters (see text).



refinement algorithms and refinement parameters on the

structure obtained, and further to estimate the accuracy and

precision of the results. From a chemical point of view, it is

quite obvious that clusters are present, and without any doubt

such a priori knowledge should be used in MC models

whenever possible. However, in one series of refinements we

did not use this information in order to test the ability of the

method to find this information. In addition to previous

investigations, a more complete diffuse data set was used. To

our knowledge, this is the first example of a study where a

complete three-dimensional set of diffuse X-ray scattering

data was used in a refinement of a complex disorder model

that is mostly based on the known average structure and the

approximate chemical composition. In order to compare two

largely independent approaches to the disordered structure

we did not only refine two different MC models, but also used

different evolutionary optimization methods.

2. Experimental

The single crystals of La~0.7AlxI1�x (x ’ 0.14) used in the

present study were synthesized from La, LaI3 and Al mixed

stoichiometrically according to a nominal composition

La3I3Al and heated in a tantalum ampoule at 1148 K for 5 d,

resulting in an inhomogeneous sample. Minute variations of

the experimental conditions lead to distinctly different

products as described in details by Kienle et al. (2007). The

best method for obtaining pure samples, which usually do not

contain good single crystals, is heating a stoichiometric

mixture of La, LaI3 and AlI3 in a tantalum ampoule at 1148 K

for 7 d. The starting materials as well as the product are very

moisture sensitive, so all manipulations must be carried out in

a glove box or by a Schlenk technique under a purified argon

atmosphere. These samples are single phase according to

X-ray powder diagrams (using a Stoe Stadi-P diffractometer

and Mo K� radiation). The difficulties posed by the chemical

analysis have been discussed by Kienle et al. (2007). Energy-

dispersive X-ray spectroscopy (EDX) analyses of several

macroscopic crystals in a scanning electron microscope

(Tescan, Oxford EDX detector) as well as of crystallites in a

transmission electron microscope (Philips CM30/ST, Noran

Si/Li EDX detector, Vantage System) confirm the given

composition, but are not very precise (see below). Elemental

analysis on bulk samples is precise; however, compounds with

similar but slightly different compositions exhibit almost the

same strong reflections in powder patterns so it is ambiguous

whether the sample really consists exclusively of crystallites

with the same diffuse scattering in their diffraction

patterns.

X-ray diffraction data from a single crystal were collected

using Ag K� radiation and a MAR345 image-plate detector.

The full 345 mm diameter of the image plate was read out with

a pixel size of 150 mm. The crystal-to-detector distance was

170 mm, the oscillation range was 0.5� per frame and the

exposure time was 900 s per frame. Altogether 492 frames

were collected from the randomly oriented crystal, which was

mounted in a glass capillary.

The program package XCAVATE (Estermann & Steurer,

1998) was used for the reconstruction of an undistorted three-

dimensional volume of reciprocal space. Data were corrected

for polarization effects and geometric factors. The diffuse data

used as a basis for all refinements described in this paper

covered a complete volume ranging from h, k = 0, . . . , 6 and l

= 0, . . . , 3.9 and are therefore more complete than the data

used in Oeckler et al. (2005a,b). The dimension of a single

voxel was 0.1 reciprocal lattice units in each direction, i.e. the

refinement was based on 61 � 61 � 40 = 148 840 voxels.

To obtain accurate intensities up to 2� = 70�, Bragg reflec-

tions were measured on an Enraf–Nonius CAD-4 four-circle

diffractometer using Mo K� radiation. A complete data set of

half a sphere was recorded and numerically corrected for

absorption effects based on the crystal shape after optimizing

the distances and inclination of faces based on  -scan data

(Stoe & Cie, 1999, 2002). There was no need for a decay

correction.

3. Average structure

As the average structure of La0.70(1)(Al0.14(1)I0.86(1)) is a simple

rock-salt type [|a| = 6.323 (1) Å], there is only marginal direct

or indirect information on the complex real structure. The La

atoms (cations) and I/Al atoms (anions) of the rock-salt type

occupy one Wyckoff position each. However, the data fit is

significantly improved when small offsets of the La and I

atoms from the ideal rock-salt positions are allowed. Owing to

the high symmetry, this yields multiple split positions. The

precise probability density around the nodes of the rock-salt

lattice cannot be determined unambiguously; however, the

best fit is obtained if an octahedral ‘split atom cluster’ of

(0, 0, z) positions is used. Apart from a scale factor, the

resolution-dependent gradients of the form factors of La, I

and Al are not sufficiently different to allow for a distinction

of the elements if partial occupancies must be taken into

account. Even precise low- and high-angle diffraction data do

not distinguish a partially occupied I-atom site from a fully

occupied Al site, for example. As the overall electron density

correlates with the scale factor, the only information about

element concentrations directly accessible from Bragg data is

the ratio of electron densities at the La and I/Al positions. As

the only reasonable atom distribution involves La atoms on

the partially occupied cation site and a mixture of I and

endohedral (and thus anionic) Al on the anion site, three

occupancy factors (La, Al, I) are needed for describing the

average structure. Obtaining them ab initio is impossible, as

only a single value (ratio of electrons on the cation site to

electrons on the anion site) can be determined. There is no

known cluster compound derived from a basic rock-salt type

exhibiting vacancies in the anion lattice. Therefore it can be

assumed that the occupancies of Al and I add up to 1.

However, one more piece of information is necessary to

determine three occupancy factors. In previous refinements

we assumed that octahedral La6Al units are rarely inter-

connected via common La atoms and thus the occupancy of

the La sites is approximately six times that of Al. However,
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this assumption is just a rough approximation and cannot be

used if the purpose is to compare results that are not based on

assumptions about the mode of connection or even the exis-

tence of clusters. The most reliable experimental result is the

molar ratio La/I obtained by EDX analyses (the small content

of the light element Al cannot be determined with a

comparable accuracy). If a certain ratio is used as a constraint,

all occupancies can be determined. Should clusters be present,

their degree of interconnection is related to the molar ratio

La/Al obtained in a constrained refinement. Taking into

account uncertainties in the experimentally obtained La/I

ratio, we performed a series of refinements with different

ratios in a range consistent with the experimental findings.

Table 1 shows the refined concentration of Al on the anion

site, obtained under the constraint of several La/I ratios

compatible with the chemical analysis. Even slight variations

within the error limits of EDX analyses (or bulk analyses of

compounds that may contain small impurities) yield extremely

strong variations in the degree of cluster condensation. This

means that for refinements based on Bragg data the given La/I

ratio has a strong influence on the possible degree of cluster

condensation in the unit cell. On the other hand, the deviation

of the split positions from the ideal rock-salt-type positions

does not significantly depend on the La/I ratio assumed. It is

0.25 (1) Å for La and 0.22 (1) Å for I. The Al site was not

affected by split positions.

4. Observations and qualitative interpretation

The most striking diffuse feature in the diffraction pattern is a

system of hollow spheres, which are only present around

Bragg reflections with h, k, l = all odd (Fig. 2). The global

symmetry of the diffuse intensities follows the m�33m Laue

symmetry of the Bragg reflections, which means that the

interactions and thus the correlations between the disordered

species follow the high symmetry of the average structure. The

radius of the spheres is about 0.1 Å�1, i.e. about 0.7|a*|. The

half-width of the skins of the spheres along radial directions is

approximately 0.05 Å�1 or 0.3|a*|. To a first approximation,

the spheres may be understood as representing an isotropic

short-range-ordered modulation with a modulation vector of

length ~10 Å and a correlation length of about 20 Å. The

existence of spherical modulations in the real structure may be

explained by local attractive forces and medium-range repul-

sive forces due to strain in the crystal structure introduced by

the local attractions as shown by Welberry (2001) for the two-

dimensional case. From a diffractionist’s point of view, the

existence of diffuse scattering only around positions h, k, l = all

odd in rock-salt-like structures is an indication of the presence

of anti-phase domains, where neighbouring domains are

shifted relative to each other by vectors h12 00i. When different

domains host the same elements and cover the same volume,

the local rock-salt structure becomes primitive cubic on

average with half the lattice constant of the local face-centred-

cubic cell. Consequently, reflections with h, k, l = all odd

become extinct and, depending on the ordering of the

domains, they are replaced by diffuse or sharp satellite scat-

tering. The distance of these features from the extinct reflec-

tions corresponds to the extent of typical domain–anti-domain

sequences. Reflections h, k, l = all even are not affected by

anti-phase domain disorder since they represent a super-

position of anion- and cation-site properties, which are

insensitive to h12 00i displacements and therefore they also

show no satellite intensities. From a chemical point of view,

however, anti-phase domains are not possible in the present

structure, because anti-phase domain boundaries would

certainly not be stable. This discrepancy can be resolved by the

following considerations. Assuming that all Al atoms are fully

enclosed by La6 octahedra, all voids must be enclosed by I6

octahedra. Consequently, both anion and cation sites host

similarly shaped units having a weak scatterer (VLa/Al) in the

centre that is enclosed by six strong scatterers (I/La). Not from

chemical properties, but from positions and relative scattering

power, single La6Al and I6VLa units may to a good approx-

imation be understood as anti-phase (micro-)domains.

Assuming a preference for undirected alternations of La6Al

and I6VLa [e.g. for arrangements along h111i, see Fig. 3 in

Oeckler et al. (2005a,b)], which both have a size of approxi-

mately 6 Å in diameter, one would expect an isotropic short-

range-ordered anti-phase superstructure with a modulation

vector length of about 12 Å, i.e. diffuse spheres around

reflections h, k, l = all odd having a radius of about
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Table 1
Results of refinements of the average structure assuming different La/I ratios within the error limits of chemical analyses.

Given molar
ratio La/I

Fraction of Al
on anion site
(cluster concentration)

Chemical formula
(occupancies)

Percent of La atoms
belonging to two clusters† R1, wR2‡

0.730§ 0.064 La0.69Al0.06I0.94 none, and additional La atoms
that are not part of clusters

0.0292, 0.066

0.740 0.111 La0.66Al0.11I0.89 <0.1 0.0292, 0.066
0.742 0.120 La0.66Al0.12I0.88 5.3 0.0292, 0.066
0.744 0.130 La0.65Al0.13I0.87 20.5 0.0292, 0.066
0.746 0.140 La0.64Al0.14I0.86 30.7 0.0292, 0.065
0.750 0.157 La0.63Al0.16I0.84 49.4 0.0292, 0.065
0.760§ 0.198 La0.61Al0.20I0.80 94.2 0.0292, 0.066

† Assuming the presence of La6Al clusters and that no La atom can belong to three clusters. ‡ R1 ¼
P
jFo � Fcj=

P
jFoj, wR2 ¼ f

P
½wðF2

o � F2
c Þ

2
�=
P
½wðF2

oÞ
2
�g

1=2,
w ¼ 1=½�2ðF2

oÞ þ ðaPÞ
2
þ bP� with P ¼ ½maxð0;F2

oÞ þ 2F2
c �=3. § Values for comparison: outside error limits of typical analyses, but obtained in single measurements (probably

affected by artefacts).
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Figure 2
Comparison of the experimental diffraction pattern with calculated intensities from model 1 and model 2 for layers hk1, hk2.8 and hk3.5. For each model
the calculated diffraction patterns with highest and lowest R values are shown. Unsatisfactory results for run 8 can clearly be identified by comparing the
diffraction patterns. Black areas in the experimental data indicate regions that were excluded from the refinement because they represent Bragg
reflections or strong parasitic background scattering. The sections range from h, k = 0, . . . , 6 with h = k = 0 being at the lower left corner of the images.



1/12 Å�1. This estimate is in a good agreement with the

experimental findings. The fact that reflections h, k, l = all odd

are not extinct may be explained by the differences in

concentration and scattering power of La6Al and I6VLa units.

In general, the intensity distribution on the spheres is highly

asymmetric. The intensities are strong on the high-angle side

of each sphere and weak or even absent on the low-angle side.

This observation indicates a so-called size effect (Welberry &

Butler, 1994), i.e. displacements correlated with substitutional

disorder of differently sized, or, as is more generally

said, differently shaped structural units. Consequently,

environment-dependent displacements have to be considered

in the models.

The maxima seen on the cross sections of the spheres are

actually arc-shaped modulations of the diffuse intensities,

which indicates that the modulations responsible for the

existence of the diffuse spheres are not completely isotropic.

This intensity modulation is strong on spheres close to the

origin of reciprocal space, but less pronounced on spheres at

high scattering angles. Other diffuse scattering is found

beneath strong Bragg reflections. The intensities of these

phenomena are weak and the location and the shape of these

intensities suggest that it is most probably thermal diffuse

scattering (TDS). Since we will focus on structural disorder,

TDS-like scattering was eliminated from the diffraction data

before starting the refinement.

5. Modelling and refinement

As a consequence of the uncertainties in the average structure

mentioned above, two series of refinements were carried out

which rely on information from the average structure to a

different degree. Model 1 is mostly based on crystal-chemical a

priori knowledge and uses only a little information from the

average structure. In contrast, model 2 is strictly constrained

to the results from the average structure refinements and does

not depend on any structural preassumptions about local

order–disorder phenomena. The goal of the second series was

to have an independent crosscheck of the results obtained by

model 1 and to elucidate whether it would be possible to

derive the complicated real structure refined in model 1

without using a priori assumptions about local arrangements.

To further strengthen the complementary character of the

refinements, models 1 and 2 were optimized using two

different optimization methods. Model 1 was refined with the

differential evolution (DE) method (Weber & Bürgi, 2002;

Price & Storn, 1997), while the second model was optimized

using the cooperative evolution (CE) technique (Weber,

2005). To test the reproducibility as well as robustness against

variations of refinement parameters and uncertainties in the

average structure, refinements were repeated several times

with different refinement parameters.

5.1. Model 1

5.1.1. The crystal model. Model 1 is essentially the same as

the one described by Oeckler et al. (2005a,b), but it is

explained in more detail in the following. Structure building

was done in four steps. In the first step, only the spatial

arrangement of the clusters was simulated using Al atoms as

representatives for complete clusters. The simulation was

initialized by distributing Al atoms randomly on anion sites

according to the occupation factor o(Al), which was also

refined by DE to possibly account for uncertainties in the

chemical analysis. At this stage, all cation sites as well as anion

sites not occupied by Al were left empty. The distribution of

Al atoms and thus the distribution of the clusters was obtained

using an Ising-model-like MC simulation. A randomly

selected Al atom was moved to another also randomly

selected but void anion site and the energy difference before

and after the move was calculated according to the change of

the atom’s environment. The potential of a site i occupied by

Al was calculated by Ei ¼
P

j �ij Jij, where the summation runs

over all j neighbouring anion sites within a distance smaller or

equal to the length of the direct space vector (2 1
2

1
2), which was

found by trial and error. The interaction parameter �ij is +1 if

site j is also occupied by Al and �1 if it is empty, while Jij are

interaction energies between octahedral units i and j to be

refined by DE. Symmetry-equivalent interatomic vectors

according to the Laue symmetry m�33m were given the same Jij

values. Since it has rarely been observed (and is unlikely

except in layered compounds) that an La atom is connected to

three clusters, this configuration was suppressed by giving a

constant penalty energy of E = 50kT to configurations having

more than two Al atoms next-neighboured to the same cation

site. A move was accepted with a probability paccept ¼

expð��EÞ=½1þ expð��EÞ�, where �E is the energy differ-

ence (in multiples of 1/kT) resulting from the move. The

simulation was repeated over 200 cycles, where one cycle is

defined such that every Al in the structure is considered once

on average. In the second step, the structure was completed in

a deterministic way by filling all cation sites next to an Al atom

with La and all void anion sites with I. Cation sites not

occupied by La were left empty. Consequently, the average

occupation factor of I is obtained by o(I) = 1 � o(Al), while

the number of La atoms present in the crystal is a function of

the frequency of edge and corner sharing in clusters. In the

hypothetical case that all La6Al units are isolated, the total

number of La atoms is exactly six times the number of Al

atoms. Each corner-sharing contact of octahedra reduces the

total number of La atoms in the structure by one and each

edge-sharing condensation reduces the total number of La

atoms in the structure by two. The influence of the degree of

cluster connections on the relative concentration of La and Al

may be calculated by o(La)/o(Al) = 6� 2ce � cc, where ce and

cc are the average number of edge- and corner-sharing

connections per octahedron, respectively. The third step was

introducing displacive distortions by moving La atoms as well

as Xi- and Xa-type I atoms along radial directions relative to

the centres of the corresponding clusters. The quantity of the

displacement was governed by one parameter for each of the

three kinds of displacements, the signs and magnitudes of

which are subject to the DE refinement. All influences of

single clusters were summed up in the case of corner- or edge-
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sharing configurations, i.e. an La atom was not shifted if

connecting two octahedra via corners, while in the case of

edge-sharing configurations the atoms move along the La–La

connection line (cf. Fig. 3). Analogous rules were applied to

displacements of I atoms occupying Xi–i, Xi–a or Xa–a positions

of more than one cluster. In the final step, all atoms were

randomly displaced according to a common isotropic mean-

square displacement factor Uuncor to account for uncorrelated

displacements. This last step is the only difference to the

model used in Oeckler et al. (2005a,b). In summary, this model

requires 15 structure parameters to be optimized.

5.1.2. Calculation of intensities. To reduce statistical noise

from the calculated intensities, a method originally introduced

by Butler & Welberry (1992) was used. The final crystal

structure was subdivided into equally sized lots each

containing 10� 10� 10 unit cells, i.e. a lot covered 63.2� 63.2

� 63.2 Å. Each lot is therefore significantly larger than the

disorder correlation length of about 20 Å (see x4), as is

required for avoiding artefacts due to too-small lot sizes. The

Fourier transform of each lot was calculated and the inten-

sities of all lots were summed up incoherently.

For a comparison of observed and calculated diffuse

intensities, a proper scale factor and a background model are

required. The total intensity was calculated using

IcalcðhÞ ¼ aIcalc;0ðhÞ þ bþ cjfSiðdhÞj2; ð1Þ

where Icalc;0 are intensities as obtained from the Fourier

transform of the structure using the lot mechanism described

above, a is a scale factor and b is a constant background

contribution. As the shape of the background resembles

typical profiles of atomic form factors, the variable part of

parasitic scattering was simulated using fSiðhÞ as a prototypic

model. The intensity of the variable background is scaled by c

and its width by d. Note that the choice of the silicon form

factor as a model for the background is arbitrary and justified

only because it gave satisfying results and implementation of

the technique was straightforward. The parameters a, b and c

were obtained directly by a linear least-squares fit. Parameter

d cannot be obtained by the linear least-squares method and

was therefore included as an additional parameter in the DE

refinement.

5.1.3. The differential evolution refinement. A compre-

hensive description about the optimization of MC models

using DE is found in Weber & Bürgi (2002). Parameters

required for a DE refinement are the crossover constant fr, the

mutation constant fm and the population size p, which all have

to be provided by the user. Our refinements were done with fr

and fm having the values 0.6 and 0.8 in all four possible

permutations. We tried two variants for finding new indivi-

duals. In the so-called elitist mode, one parent of a new child is

always the best individual found so far, i.e. the search space for

finding parameter values for genes of a new individual is

restricted to the environment of the current ‘leader’, while in

the non-elitist mode all individuals may be selected as new

parents with the same probability. The elitist mode is expected

to converge faster than the non-elitist mode but has a higher

risk of a premature loss of genetic diversity and thus getting

stuck in a local minimum. The number of individuals per

population was 80 in all cases, i.e. more than five times the

number of refined parameters. The size of the crystal was n3

lots with n = 1, 2, 3, . . . . Each run was started with one lot and

n was incremented if no child was replacing a parent during

one generation. There is no general stop criterion for EA

refinements. Bürgi et al. (2005) have shown that the essential

structural information from their DE/MC refinements may be

obtained by averaging the information from a population after

some ten generations, while consecutive generations mainly

have the effect of reducing noise in the calculated diffraction
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Figure 3
Scatter plots of cross sections through isolated clusters (a, b), corner-
sharing clusters (c, d) and edge-sharing condensations (e, f ). The left
column shows superpositions of clusters from run 1 in model 1, while the
plots in the right column are taken from run 1 in model 2. Scatter plots
from other refinements give comparable results. The nodes of the
gridlines, which have a spacing of |a|/2, represent the ideal sites of the
rock-salt structure. Arrows indicate characteristic displacements from the
rock-salt structure nodes. In model 1 only the magnitudes and the signs of
the displacements are refined, while the respective directions are
restricted by the MC model. In model 2 displacements are unrestrained.



patterns. It is therefore reasonable to stop a refinement at the

latest if increasing the lot number (= reducing statistical noise)

has no significant influence on the R values and on the refined

parameters over several generations. This termination

criterion was applied in this study, although the refinements

are therefore more time consuming compared to stopping at

an earlier stage and relying on population averages as

proposed by Bürgi et al. (2005). Between 3 and 20 CPUs on a

cluster of Macintosh G5 2 GHz computers were available for

parallel computing. Since the available computing power was

strongly fluctuating even during one refinement it is difficult to

report the total CPU time consumed. The total wall-clock time

required for one run was between five and ten days.

The start values of all Ising parameters Jij describing the

distribution of the clusters were taken randomly from a range

�1kT to 1kT, the shift parameters describing local relaxations

were taken from �0.22 to 0.22 Å, while initial values o(Al)

were chosen from the interval 0.11 to 0.14 and start values for

uncorrelated displacements ranged from 0 to 0.05 Å2.

Reflecting boundary conditions were applied to restrict the

possible parameter values (‘world size’) of o(Al) to between

0.10 and 0.15 and Uuncor to between 0 and 0.1 Å2. All other

parameter values were unrestrained.

5.2. Model 2

5.2.1. The Monte Carlo model. In contrast to model 1,

model 2 is (almost) exclusively based on information from the

average structure, i.e. neither information about the existence

of clusters nor preassumptions about local relaxations are

included. This generalization introduces additional degrees of

freedom and therefore refinement of model 2 is significantly

more challenging than that of model 1. For the initialization of

the MC model, anion sites of the rock-salt structure were

randomly filled by Al or I atoms corresponding to the

respective average occupancy parameters. The atoms were

then randomly displaced in accordance with the split displa-

cements and anisotropic displacement parameters from the

average structure. Analogously, cation sites were randomly

filled by La atoms. The vacancies were represented as pseudo-

atoms VLa with no displacements. The MC simulation was

done by swapping atoms between anion and cation sites such

that the average structure was unaffected by the MC simula-

tion (Proffen & Welberry, 1998). Again, the change of the total

energy induced by the manipulation of the structure was

calculated and the modification was accordingly accepted or

rejected as described above.

The energy of a site i was calculated assuming an Ising

model and Hooke’s spring interactions with the six next-

neighbouring atoms, i.e. Ei ¼
P6

j¼1 kijðdij � d0;ijÞ
2
þ Jij, where

dij is the distance between the atoms in the simulated crystal,

while d0;ij (the equilibrium position of Hooke’s potential), kij

(the force constant) and Jij (Ising parameter) are parameters

to be found for each of the next-neighbour pairs La–I, La–Al,

VLa–Al and VLa–I. To reduce the number of parameters as

well as correlations, which were strongly affecting the

performance of early trials, constraints Jij(La–I) =�Jij(La–Al)

and Jij(VLa–I) = �Jij(VLa–Al) were used, which were found as

a trend in initial tests. As a consequence of the computational

complexity of model 2, it was not possible to find a complete

interaction scheme by trial and error as usually done when

setting up an MC model. Pair interactions beyond next-

neighbour correlations were taken from model 1, i.e. Ising-

model-like Al–Al interactions up to a distance corresponding

to a vector (2 1
2

1
2) were employed. Adopting this interaction

scheme provides information about the length of medium-

range Al interactions; however, no bias towards formation of

La6Al units or towards special local relaxation rules is intro-

duced. In all cases pair-interaction parameters were

constrained to obey Laue symmetry m�33m. Altogether, model

2 has 20 MC parameters.

5.2.2. The cooperative evolution refinement. The CE

method was described in detail by Weber (2005). Contrary to

DE, where each individual builds its own crystal, all indivi-

duals of a CE population cooperate in building one model

crystal. Further, in contrast to DE, CE is not generation-

based, and it does not aim to converge to a relatively homo-

genous population, but it allows strong genetic diversity even

if the model has converged to a homogenous structure. The

parameters of the refinement are a mutation constant fm and a

parameter ft that controls selection pressure and population

size p. Owing to its higher complexity, the refinement of model

2 was extremely time consuming, which did not allow testing

of the influence of variations of fm, ft and p. Again, the lot

mechanism as described above was used for calculating

diffraction intensities. The (constant) crystal size was 40 � 40

� 40 unit cells subdivided into 64 lots each containing 10 � 10

� 10 unit cells. Determination of scale and background factors

was done analogously to model 1 using equation (1). To

accelerate the refinement, the background parameter d from

equation (1) was not refined but taken as a constant from the

results of model 1. As shown in Table 1, small uncertainties in

element concentrations may have a strong impact on some

aspects of the real structure. In contrast to model 1, the

concentration of elements is defined at the beginning of an

evolutionary refinement and not changed afterwards. To

account for the uncertainty of the element occupations, four

refinements were done with o(Al) = 0.11, 0.12, 0.13 and 0.14.

The concentration of I was calculated as o(I) = 1 � o(Al),

while o(La) as well as displacement parameters were taken

from the average structure (Table 1). The start values for the

Ising parameters Jij were randomly chosen from the range

�1kT in all cases. The spring parameters kij were chosen from

0 to 100 kT/|a|2 and the initial equilibrium distances d0;ij

ranged from 2.84 to 3.48 Å. Force constants kij were restrained

to have positive values and the world size for each Jij was

between�100kT and 100kT. Equilibrium distance parameters

d0;ij were allowed to vary between 1.83 and 5.48 Å.

The CE refinement was parallelized by distributing the

calculations to 14 nodes of a Macintosh cluster. Owing to

intrinsic properties of the CE algorithm, parallelization is not

as efficient as it is in the case of DE, i.e. efficiency was only

about 60%, compared to about 95% for DE refinements.

Refinements were stopped if no significant improvement of
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the structure could be observed over 100 h. Owing to the

complexity of the model, the structure was computationally

much more demanding then model 1, i.e. the complete

execution of one refinement took about two months.

6. Results and discussion

6.1. General

Fig. 2 shows the layers hk1, hk2.8 and hk3.5 as obtained by

refinements of models 1 and 2 compared to the experimental

data. The layers are taken from the best individuals of runs 4

and 8 from model 1 and runs 2 and 1 from model 2, i.e. from

the runs with the lowest and highest R values in each case,

where R ¼ ½
P
ðIobs � IcalcÞ

2=
P

I2
obs�

1=2. Except for run 8 of

model 1, all patterns show a satisfying agreement between

observations and calculations. The principal features of the

experimental diffuse intensities are nicely reproduced: diffuse

spheres with proper radius are observable at expected posi-

tions and local maxima as well as intensity asymmetries

regarding the centres of the spheres are also found to a good

approximation. In agreement with the experiment, no diffuse

spheres are found around reflections with h, k, l = all even.

The statistical evaluation of the results is shown in Tables 2

and 3. In Table 2, which shows the results for model 1, the best

individual within a population as well as the corresponding

population averages including their estimated standard

deviations (e.s.d.’s) are given. In Table 3 the results of model 2

are reported, as well as the averages and e.s.d.’s of all 7 � 80 =

560 individuals from runs 1–7 of model 1 and runs 1–4 of

model 2. Note that CE refinements do not allow the calcula-

tion of meaningful population averages. As seen in Table 2,

the R values of the refinements in elitist mode are slightly

smaller than those of the non-elitist refinements. The smaller
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Table 2
Results from the refinements of model 1.

For each run the results from the best individual (left-hand column of each pair) as well as the average and the e.s.d.’s from all individuals within the corresponding
population (right-hand column of each pair) are shown.

Run

1 2 3 4 5 6 7 8

Mode elitist elitist elitist elitist non-elitist non-elitist non-elitist non-elitist
Individuals 80 80 80 80 80 80 80 80
fr 0.6 0.8 0.6 0.8 0.6 0.8 0.6 0.8
fm 0.6 0.6 0.8 0.8 0.6 0.6 0.8 0.8
Lots 64 64 125 125 64 64 125 64
Generations 241 228 280 304 245 325

Average structure
o(La) 0.72 0.716 (7) 0.60 0.598 (7) 0.67 0.66 (3) 0.71 0.70 (2) 0.69 0.66 (4) 0.70 0.67 (3) 0.57 0.63 (4) 0.58 0.58 (9)
o(I) 0.85 0.8505 (6) 0.88 0.882 (2) 0.87 0.875 (7) 0.86 0.863 (6) 0.86 0.86 (1) 0.86 0.857 (5) 0.89 0.87 (1) 0.89 0.87 (1)
o(Al) 0.15 0.1494 (6) 0.12 0.117 (2) 0.13 0.125 (7) 0.14 0.137 (6) 0.14 0.14 (1) 0.14 0.142 (5) 0.11 0.13 (1) 0.11 0.13 (1)
Uiso(La) (Å2) 0.10 0.103 (3) 0.11 0.108 (3) 0.09 0.10 (1) 0.08 0.078 (7) 0.13 0.10 (2) 0.10 0.10 (2) 0.13 0.11 (4) 0.10 0.13 (7)
Uiso(I) (Å2) 0.05 0.051 (3) 0.02 0.021 (1) 0.05 0.049 (7) 0.06 0.056 (6) 0.05 0.04 (2) 0.04 0.036 (1) 0.02 0.04 (1) 0.01 0.05 (3)
Uiso(Al) (Å2) 0.02 0.020 (2) 0.00 0.0003 (4) 0.03 0.026 (6) 0.03 0.025 (3) 0.01 0.008 (5) 0.01 0.010 (6) 0.01 0.009 (6) 0.01 0.01 (1)

Spatial cluster correlations
h12

1
2 0i 0.59 0.60 (2) 0.66 0.65 (2) 0.45 0.46 (5) 0.49 0.49 (6) 0.62 0.6 (1) 0.62 0.7 (1) 0.61 0.7 (1) 0.44 0.8 (4)
h100i 0.32 0.30 (5) 0.00 0.003 (2) 0.05 0.06 (3) 0.18 0.17 (7) 0.26 0.3 (2) 0.22 0.3 (1) 0.16 0.4 (2) 0.32 1 (1)
h1 1

2
1
2i 0.77 0.77 (3) 0.59 0.60 (2) 0.88 0.84 (8) 0.87 0.87 (8) 0.73 0.8 (2) 0.75 0.7 (2) 0.46 0.6 (1) 0.79 0.7 (5)

h110i 1.05 1.06 (4) 1.16 1.15 (4) 1.07 1.1 (3) 1.08 1.1 (1) 1.12 1.1 (4) 1.10 1.1 (3) 1.36 1.0 (3) 0.62 1 (1)
h32

1
2 0i 1.37 1.36 (2) 1.45 1.46 (2) 1.43 1.41 (7) 1.38 1.38 (5) 1.38 1.4 (1) 1.33 1.4 (1) 1.61 1.5 (2) 1.87 1.5 (5)
h111i 1.61 1.61 (7) 1.75 1.77 (7) 1.53 1.6 (3) 1.49 1.5 (2) 1.61 1.7 (6) 1.63 1.8 (5) 1.82 1.7 (2) 2.06 2 (1)
h32 1 1

2i 1.15 1.15 (2) 1.25 1.25 (1) 1.12 1.15 (7) 1.12 1.12 (7) 1.21 1.2 (1) 1.19 1.2 (1) 1.15 1.2 (1) 1.18 1.2 (5)
h200i 0.66 0.67 (8) 0.64 0.66 (8) 0.54 0.7 (2) 0.60 0.6 (1) 0.55 0.6 (6) 0.72 0.8 (5) 0.77 0.5 (3) 0.23 1 (1)
h32

3
2 0i 0.73 0.72 (2) 0.62 0.62 (3) 0.74 0.75 (8) 0.76 0.77 (7) 0.73 0.7 (2) 0.81 0.8 (2) 0.55 0.6 (2) 0.65 0.8 (7)
h2 1

2
1
2i 0.96 0.96 (2) 0.95 0.94 (2) 1.00 1.00 (6) 1.02 1.03 (5) 0.98 1.0 (1) 0.98 1.0 (2) 0.83 1.0 (1) 0.83 1.1 (5)

h210i 0.90 0.90 (1) 0.93 0.94 (1) 0.88 0.86 (5) 0.83 0.85 (4) 0.90 0.9 (1) 0.88 0.9 (1) 1.00 1.0 (1) 0.85 1.2 (8)
Isolated
clusters (%)

4.50 5 (1) 18.20 19 (2) 32.64 31 (9) 17.68 19 (9) 6.30 10 (8) 5.90 5 (3) 22.6 8 (19) 36.3 7 (7)

Average next-neighbour distances (Å)
Al–La 2.91 2.912 (5) 2.86 2.859 (3) 2.92 2.92 (2) 2.96 2.95 (1) 2.85 2.90 (4) 2.89 2.90 (2) 2.84 2.89 (4) 2.88 2.89 (8)
La–I 3.28 3.285 (4) 3.28 3.297 (2) 3.27 3.27 (1) 3.27 3.269 (7) 3.31 3.29 (2) 3.28 3.29 (1) 3.30 3.30 (2) 3.25 3.31 (5)
I–VLa 3.08 3.080 (4) 3.10 3.103 (2) 3.10 3.102 (6) 3.08 3.082 (8) 3.07 3.08 (2) 3.09 3.10 (1) 3.12 3.09 (2) 3.14 3.10 (4)

Distances within isolated clusters (Å)
Al–La 2.89 2.896 (4) 2.85 2.854 (4) 2.92 2.91 (2) 2.95 2.94 (1) 2.83 2.89 (4) 2.88 2.88 (2) 2.83 2.87 (5) 2.87 2.58 (9)
La–Ii 3.25 3.253 (4) 3.25 3.257 (3) 3.25 3.25 (1) 3.25 3.251 (8) 3.28 3.27 (3) 3.26 3.26 (2) 3.24 3.27 (2) 3.22 3.28 (5)
La–Ia 3.33 3.340 (7) 3.39 3.393 (4) 3.32 3.33 (2) 3.29 3.30 (2) 3.38 3.36 (5) 3.33 3.36 (3) 3.45 3.38 (6) 3.36 3.42 (1)
R value 0.077 0.0780 (2) 0.081 0.0811 (2) 0.076 0.0768 (4) 0.0757 0.0761 (1) 0.081 0.083 (1) 0.079 0.0814 (6) 0.085 0.091 (2) 0.094 0.099 (2)



standard deviations of R values and structure parameters and

the closer relation between the best individual and the

population average indicate that the elitist-mode runs

converged better (but not necessarily to better results, see

below) than non-elitist refinements. The R values of model 2

are comparable to those of the elitist refinements of model 1.

The variation of the structure parameters obtained by model 1

and 2 is small and the results are consistent (for a detailed

discussion about the results see below) except for run 8 of

model 1. As this run has not only the highest R values, but also

a bad qualitative agreement with the experimental diffraction

pattern and large e.s.d.’s for R values and structure parameters,

we conclude that this run did not converge. The bad perfor-

mance of run 8 can be explained by the corresponding

refinement parameters. This run was executed in non-elitist

mode, and it has the largest values for the crossover and

mutation constants, i.e. it has the largest search space for

better solutions and consequently convergence is slow. On the

other hand, run 1 from model 1 has the smallest search space

and thus the e.s.d.’s of the structure parameters are the

smallest of all runs. Taking the average of all individuals from

runs 1–7 of model 1 (Table 3) as the best guess for the true

values, we find that elitist-mode refinements tend to under-

estimate the uncertainties, i.e. the variation of the values

between the runs (‘outer variance’) is larger than the e.s.d.’s

within a population (‘inner variance’), while non-elitist

refinements overestimate them. The most consistent results,

i.e. values that agree within three e.s.d.’s with the average of all

individuals, were found for runs 3–6, which are also the runs

with the lowest R values within the groups of elitist/non-elitist

refinements. It may therefore be assumed that the e.s.d.’s of

the average of runs 1–7 of model 1 are also overestimated,

because averaging includes sub-optimum runs (1, 2 and 7),

which have a stronger impact on the e.s.d.’s than the mean

values of the respective parameters. Interestingly, the most

successful elitist-mode runs 3 and 4 have large mutation

constants fm, while these are small in the best non-elitist-mode

runs 5 and 6. A large mutation constant therefore seems to
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Table 3
Results from the refinements of model 2, and a comparison of the averages and e.s.d.’s of all individuals from model 1 (excluding run 8, which did not
converge) and all runs of model 2.

Run
Average model 1 Average model 2

1 2 3 4 (runs 1–7) (runs 1–4)

Individuals 120 120 120 120
fm 0.5 0.5 0.5 0.5
ft 0.9 0.9 0.9 0.9

Average structure (not refined by CE)
o(La) 0.659 0.652 0.649 0.644 0.66 (4) 0.651 (6)
o(I) 0.89 0.88 0.87 0.86 0.87 (1) 0.87 (1)
o(Al) 0.11 0.12 0.13 0.14 0.14 (1) 0.12 (1)
Uiso(La) (Å2) 0.084 0.084 0.084 0.084 0.10 (2) 0.084
Uiso(I) (Å2) 0.085 0.085 0.085 0.085 0.04 (1) 0.085
Uiso(Al) (Å2) 0.030 0.030 0.030 0.030 0.01 (1) 0.03

Cluster correlations
h12

1
2 0i 0.530 0.663 0.792 0.793 0.6 (1) 0.7 (1)
h100i 0.140 0.091 0.107 0.064 0.2 (2) 0.10 (3)
h1 1

2
1
2i 0.700 0.847 0.851 0.866 0.7 (1) 0.82 (8)

h110i 1.270 1.093 1.176 1.198 1.1 (2) 1.18 (7)
h32

1
2 0i 1.330 1.368 1.410 1.365 1.4 (1) 1.37 (3)
h111i 1.740 1.731 1.741 1.669 1.6 (3) 1.72 (4)
h32 1 1

2i 1.160 1.210 1.270 1.260 1.2 (1) 1.22 (5)
h200i 0.930 0.800 0.910 0.900 0.6 (3) 0.89 (6)
h32

3
2 0i 0.500 0.650 0.800 0.750 0.7 (2) 0.7 (1)
h2 1

2
1
2i 1.070 1.110 1.130 1.100 1.0 (1) 1.10 (2)

h210i 0.870 0.960 1.000 1.020 0.9 (1) 0.96 (7)
Isolated clusters (%) 33.900 22.978 11.701 9.463 13 (11) 20 (11)
Isolated La atoms (%) 14.700 11.226 9.092 5.024 — 10 (4)
La atoms belonging to more

than two clusters (%)
0.140 0.360 0.800 0.800 <0.01 0.5 (3)

Next-neighbour distances (Å)
Al–La 2.970 2.973 2.990 2.992 2.91 (3) 2.98 (1)
La–I 3.270 3.281 3.281 3.286 3.29 (2) 3.280 (7)
I–VLa 3.060 3.074 3.076 3.077 3.09 (1) 3.072 (8)

Next-neighbour distances within isolated clusters (Å)
Al–La 2.940 2.941 2.958 2.966 2.89 (3) 2.95 (1)
La–Ii 3.270 3.275 3.274 3.280 3.26 (2) 3.275 (4)
La–Ia 3.330 3.325 3.318 3.314 3.35 (4) 3.322 (7)
o(La) at position next to Al (%) 96.400 93.798 96.053 95.052 — 95 (1)
R value 0.079 0.077 0.078 0.077 0.081 (5) 0.078 (1)



compensate for the effect of the intrinsically small search

space in elitist refinements and, vice versa, the intrinsically

large search space due to using the non-elitist mode is

successfully repressed by a small mutation constant. On the

contrary, small mutation constants in the elitist mode lead to a

rapid loss of genetic diversity and thus to nicely converged but

sub-optimum results with e.s.d.’s that are too small, while large

fm values in non-elitist mode prohibit convergence within a

reasonable time. As far as was tested in this study, the varia-

tion of the crossover constant fr seems to have a less distinct

influence on the performance of the refinements. The present

results do not allow a definite conclusion about the role of this

parameter in DE/MC refinements to be drawn.

Although it has a higher degree of freedom, model 2 does

not yield significantly lower R values than model 1. This may

be explained by the differences in the underlying MC models.

A cluster occupying an energetically disadvantageous position

in model 2 can only move to a more favourable place if it is

deconstructed step-by-step at its old position and recon-

structed at the new position. At advanced stages of the

refinement, energy parameters strongly favour complete

clusters and, consequently, a high energy barrier has to be

overcome when deconstructing a cluster and therefore

reaching equilibrium becomes very slow. In contrast, reposi-

tioning clusters in model 1 is fast, because clusters are impli-

citly moved as complete units.

6.2. Average structure

The average structures obtained from model 1 are not

restricted to results from the Bragg refinement, but result from

the refined MC model. The properties of the average structure

directly depend on the refined disorder with the only restric-

tion being that the Al occupancy factor is restrained to values

between 0.10 and 0.15. As seen in Table 2, the refined Al

concentration shows some preference for o(Al) ’ 0.13–0.14;

however, the bandwidth of the results covers almost the

complete world size of o(Al) and therefore no definite

conclusion can be drawn about the total cluster concentration.

The same is true for refinements of model 2 (Table 3), where

no preference for a specific Al concentration can be observed.

The strong variation in the occupancy of La in model 1 is, as

expected, strongly correlated with the variation of the Al

occupancy and therefore also a consequence of uncertainties

in the element concentrations. Comparing the refined occu-

pancies of model 1 with those shown in Table 1, we find that at

least the population averages of runs 3–7 and the average of

runs 1–7 are consistent with the results of the Bragg structure.

Runs 1 and 2 do not yield fully satisfying results when

understanding the e.s.d.’s as standard uncertainties.

The displacement parameters Uiso shown in Tables 2 and 3

are calculated as the mean-square displacements from the

ideal anion and cation sites of the NaCl structure, i.e. they

include information about local relaxations (split positions)

and about thermal or random displacements. The displace-

ment parameters of model 1 are in a good agreement with the

average structure (= Uiso of model 2, see Table 3) apart from

Uiso(I), which is significantly smaller than the reference values

from model 2. The average structure of model 2 was restrained

to the Bragg structure and not modified by the CE refinement;

no further analysis is therefore required.

6.3. Cluster correlations

The correlation coefficients shown in Tables 2 and 3

represent the ratio of the total number of observed cluster

pairs for given vectors huvwi relative to a completely random

distribution. Correlation-coefficient values smaller (larger)

than 1 mean that the corresponding pairs are present with

smaller (higher) frequency than in the case of a random

distribution. The population averages of model 1 and the

results of model 2 give consistent results with relatively small

e.s.d.’s. Consistent with the findings by Oeckler et al. (2005a,b),

edge- and in particular corner-sharing configurations are less

favourable than a random distribution of La6Al units. The

frequency of edge-sharing configurations is about 2/3 of a

random distribution, while corner-sharing configurations are

rare or possibly do not even exist. Strongest correlations are

found between units separated by vectors h32
1
2 0i and h111i, i.e.

by about 10 and 11 Å, respectively, which nicely correlates

with the radius of the diffuse spheres (~1/10 Å�1). Consistent

with the approximate half-width of the skins of the diffuse

spheres (~1/20 Å�1), only weak correlations beyond 15 Å are

present. The h111i correlation means a void VLa between the

clusters which allows for relaxation of I atoms, i.e. they can

move towards the void and thus take the optimum distance to

La atoms of the clusters.

The fraction of isolated La6Al octahedra, i.e. those that are

not connected to other La6Al octahedra, shows a strong

variation from about 4 to 34% of all octahedra and it is

strongly correlated with the variance of the Al concentration.

This can be understood from the fact that the probability of

having all 18 next-neighbouring anion sites (12 via edges and 6

via corners) of the La6Al units unoccupied by other octahedra

strongly decreases with increasing Al concentration. In both

series the fraction of La atoms belonging to more than two

octahedra is negligibly small (<1%). While this behaviour was

enforced in model 1 by a large penalty term, it was found by

model 2 without external bias.

6.4. Next-neighbour distances

Al–La distances of the real structure are smaller compared

to average next-neighbour cation–anion distances (3.162 Å),

while I–La contacts are longer. If next-neighboured to a

vacancy, I atoms move towards the voids by about 0.1 Å

relative to the ideal sites of the rock-salt structure. The scatter

plots shown in Fig. 3 represent a superposition of single

clusters and of dimers with edge- or corner-sharing config-

urations as taken from the model crystal. The scatter plots of

model 1 and 2 give essentially the same information.

Compared to the average position, it is consistently found that

La and Al atoms move along radial directions relative to the

centres of clusters. In both models, displacements of La and I

atoms, which belong to two octahedra, may to a good
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approximation be described as the sum of the influences

caused by the individual clusters. While the direction of local

relaxations was enforced by model 1, it was found by model 2

without a priori chemical information. In general, interatomic

distances between specific pairs of atoms were found with an

accuracy significantly better than 0.1 Å.

6.5. Completeness of clusters

Model 1 enforces the formation of complete La6Al units

and therefore perfection of the clusters requires no testing.

The crucial parameter for testing the completeness of clusters

in model 2 is the occupancy of La sites next-neighboured to

Al. In the case of having perfect clusters only it is expected to

be 1, while, for instance, in the case of a random distribution of

Al and La the environment of Al is expected to be filled by La

with the occupancy factor of the average structure, i.e. by

about 2/3. Table 3 shows that about 95% of the sites next to Al

were found to be filled by La and thus the condition for perfect

clusters is not completely fulfilled. This result is not necessarily

to be interpreted such that the crystal structure hosts incom-

plete clusters in a significant number. As discussed above, it is

expected that at the final stage of the simulation rearrange-

ment of clusters is slow and accompanied by cluster fragments,

even if MC parameters strongly favour building of complete

clusters. It has been shown by Weber (2005) that pair-

correlation probabilities of 1 can hardly be reproduced with

current MC simulation techniques, but are usually a few

percent smaller than 1. Another indication that the assump-

tion of complete clusters is consistent with the refinements is

that model 1, which hosts complete clusters only, gives fits

which are comparable or even better than those of model 2.

Unexpectedly (but not impossible) from a chemical point of

view, a significant number of La atoms in model 2 are located

on sites not next-neighboured to Al positions. An explanation

for this observation may be given by the following consid-

erations. Analogously to the finding of incomplete clusters,

slow equilibration of the MC model may also be the reason

why a fraction of the La atoms, which are supposed to be next

to Al, are found at isolated positions. Further, the ratio o(Al)/

o(La) obtained by Bragg refinement is constant during CE

modelling, but the initial concentrations do not necessarily

match the requirements of the refined cluster connectivity. For

instance, in run 1 the ratio o(Al)/o(La) = 1/6, which may only

be correct if there is no corner- or edge-sharing condensation.

Our refinements, however, show that at least edge-sharing

configurations are clearly present in the structure, i.e. the

presumed average structure is not compatible with the real

structure in every detail.

7. Conclusions

The two series of refinements of the disordered structure of

La0.70(1)(Al0.14(1)I0.86(1)) using complementary Monte Carlo

models and optimization methods gave consistent qualitative

and quantitative structural results. The results are chemically

reasonable and consistent with the findings reported by

Oeckler et al. (2005a,b). It was found that corner-sharing

configurations of La6Al units are, if any, present in only a small

number, while edge-sharing configurations are found signifi-

cantly more often, but with lower frequency than expected for

a random distribution of clusters. The strongest correlations

are between clusters separated by vectors h111i. La atoms and

outer ligands of single-octahedron clusters move along a radial

direction towards the Al atoms, while the inner ligands move

away from the cluster’s centre. If atoms belong to more than

one cluster, displacements can be described as the sum of the

influences from corresponding clusters whereby each cluster

behaves to a good approximation like an isolated cluster.

Comparison of the results from models 1 and 2 show that the

assumptions about the existence of clusters and local relaxa-

tions made in model 1 can also be reproduced without using

this information explicitly in the MC model 2. Somewhat more

ambiguous results were obtained regarding the absolute

number of single-octahedron clusters in the structure, which

shows a very strong variation in different runs. This structure

parameter is extremely sensitive to the element concentra-

tions of Al and La. Although chemical analysis and refinement

of the average structure were done with great care, the

element concentrations could not be obtained with sufficient

accuracy to allow reasonable determination of the concen-

tration of single-octahedron clusters. This major shortcoming

in the determination of the real structure is therefore a direct

consequence of problems at steps usually done prior to the

investigation of diffuse scattering. Obviously, small uncer-

tainties in the average structure propagate to the real structure

and may have a strong impact on the understanding of some

aspects of the real structure. This finding strongly emphasizes

the importance of determining the average structure as

accurately as possible before starting the investigation of the

disordered structure. Since diffuse scattering provides only

information about deviations from the average structure, it can

hardly compensate for uncertainties in the Bragg structure.

It can further be concluded that the combination of

evolutionary algorithms with Monte Carlo modelling is

capable of carrying out structure solution as well as refinement

of a disorder model. In our study, model 2 is a typical example

for a solution of the real structure, because it includes almost

no a priori knowledge about the local structure. In analogy to

well known average structure solution methods, the results

obtained from model 2 give a quite reliable picture about the

principles of the disordered structure. However, details are

still to be refined using a more sophisticated model like model

1. Although not explicitly tested in this study, we currently see

no clear indication that for the purposes of structure solution

CE is superior to DE or vice versa. On the one hand, as the

population is not required to converge, CE is more flexible

and less prone to getting stuck in a local minimum, which is a

welcome feature at the stage of structure solution. On the

other hand, taking advantage of parallel computing is by far

easier and more efficient when using DE. Thus, results may be

obtained much faster and more variants may be tried out if

large-scale computer clusters are available. For the purposes

of structure refinement, however, DE is certainly the method

of choice. The possibility of calculating population averages
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does not only improve the accuracy of the results, but

furthermore provides reasonable estimates about uncertain-

ties. In the elitist-mode, standard deviations of population

averages seem to underestimate uncertainties, while in the

non-elitist mode uncertainties are overestimated. When using

DE in elitist mode it was found that the best results regarding

R values, structure parameters and estimates of uncertainties

are obtained with a large mutation constant (0.8 in this study),

while non-elitist-mode refinements show the best performance

with small mutation constants (here 0.6). When carrying out

CE refinements, uncertainties cannot be obtained from a

single run, but have to be estimated by repeated refinements,

which is extremely time consuming.

The calculations done in this study are computationally

rather time consuming, and thus at present they do not seem

to be attractive for the purposes of routine investigations.

However, the problem addressed in this work is very

demanding. The models not only have a relatively large

number of parameters, but in addition the disorder problem is

three-dimensional. This not only requires a complete three-

dimensional experimental diffuse data set, but also refinement

of three-dimensional disorder models. If experimental data

show diffuse streaks or layers, as is frequently observed, then

the disorder model is one- or two-dimensional as well, and

structure simulation and calculation of the Fourier transform

may be done by some orders of magnitude faster than in this

study. Further, available computing power is still growing and

evolutionary algorithms do not only benefit from faster CPUs,

but in a quite natural way also from large-scale computer

clusters and multi-processor architectures, which become

more and more readily available. Finally, a better under-

standing of evolutionary algorithms in combination with

Monte Carlo modelling, e.g. the role of population averaging,

and the availability of more optimized computer code have a

high potential for accelerating the investigations significantly.

We thank Professor Dr W. Schnick for generous support of

this project.

References

Bürgi, H. B., Hauser, J., Weber, T. & Neder, R. B. (2005). Cryst.
Growth Des. 5, 2073–2083.

Butler, B. D. & Welberry, T. R. (1992). J. Appl. Cryst. 25, 391–399.
Estermann, M. A. & Steurer, W. (1998). Phase Transit. 67, 165–

195.
Kienle, L., Oeckler, O., Weber, T., Duppel, V., Mattausch, Hj. &

Simon, A. (2007). Eur. J. Inorg. Chem. pp. 1897–1902.
McGreevy, R. L. (2001). J. Phys. Condens. Matter, 13, R877–R913.
Oeckler, O., Kienle, L., Mattausch, Hj., Jarchow, O. & Simon, A.

(2003). Z. Kristallogr. 218, 321–331.
Oeckler, O., Kienle, L., Mattausch, Hj. & Simon, A. (2002a). Angew.

Chem. 114, 4431–4433.
Oeckler, O., Kienle, L., Mattausch, Hj. & Simon, A. (2002b). Angew.

Chem. Int. Ed. Engl. 41, 4257–4259.
Oeckler, O., Mattausch, Hj. & Simon, A. (2005). Z. Anorg. Allg.

Chem. 631, 3013–3018.
Oeckler, O., Weber, T., Kienle, L., Mattausch, Hj. & Simon, A.

(2005a). Angew. Chem. 117, 3985–3989.
Oeckler, O., Weber, T., Kienle, L., Mattausch, Hj. & Simon, A.

(2005b). Angew. Chem. Int. Ed. Engl. 44, 3917–3921.
Proffen, Th. & Neder, R. B. (1997). J. Appl. Cryst. 30, 171–175.
Proffen, Th. & Welberry, T. R. (1998). Phase Transit. 67, 373–397.
Price, K. & Storn, R. (1997). Dr. Dobb’s J., April issue, pp. 18–24.
Ryazanov, M., Kremer, R. K., Simon, A. & Mattausch, Hj. (2006).

Phys. Rev. B, 73, 035114.
Simon, A. (1988a). Angew. Chem. 100, 163–188.
Simon, A. (1988b). Angew. Chem. Int. Ed. Engl. 27, 159–183.
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